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Joint PMF Learning

• Joint probability mass function (PMF) is considered as the ‘gold standard’ in
statistical machine learning.

• Joint PMF estimation has numerous applications:

– recommender systems
– classification tasks
– crowdsourcing
– survey/database completion

• In these applications, we are given with partial observations of the random
variables.

• Knowing the joint PMF of the random variables can help us us predicting the
missing data.
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Joint PMF of N Random Variables

𝑍𝑍1,𝑍𝑍2, … . ,𝑍𝑍𝑁𝑁

Pr(𝑍𝑍1 = 𝑧𝑧1
(𝑖𝑖1), … . ,𝑍𝑍𝑁𝑁 = 𝑧𝑧𝑁𝑁

(𝑖𝑖𝑁𝑁))

Each 𝑍𝑍𝑛𝑛 takes 𝐼𝐼𝑛𝑛
discrete values

• Short hand notation for Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N ) is Pr(i1, . . . , iN)
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Challenges in Joint PMF Learning

• Suppose we have 10 random variables each taking 10 different values.

• Then joint probability of these 10 random variables have 1010 entries!!!

• The ‘naive’ approach for joint PMF estimation is counting the occurences of
the joint variable realizations which means we require S � 1010 examples for a
reasonable accuracy.

• This makes the ‘naive’ approach very inaccurate.
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Challenges in Joint PMF Learning

• Suppose we have 10 random variables each taking 10 different values.

• Then joint probability of these 10 random variables have 1010 entries!!!

• The ‘naive’ approach for joint PMF estimation is counting the occurences of
the joint variable realizations which means we require S � 1010 examples for a
reasonable accuracy.

• This makes the ‘naive’ approach very inaccurate.

What are the workarounds?
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Existing Alternatives for Joint PMF Learning

Linear MMSE 
(LMMSE) 
estimator

Logistic regression

Kernel methods

Neural network

Linear

Nonlinear

Graphical 
models

Prior 
distributions

Approximations Assumptions

Feb 2020 EECS, Oregon State University 6



• These are effective surrogates, but do not directly address the fundamental
challenge in estimating high-dimensional joint probability from limited samples.
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• These are effective surrogates, but do not directly address the fundamental
challenge in estimating high-dimensional joint probability from limited samples.

Can we ever reliably estimate the joint PMF of variables given limited data
without any structural assumptions?
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Joint PMF Learning via Tensor Decomposition
• Kargas et al. proposed a new framework for blindly estimating the joint probability

mass function (PMF) of N discrete random variables [Kargas et al., 2018].

• The method is based on establishing a link between joint PMF and tensors.

• Joint PMF Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N ), where Zn can take In different values

can be represented as a N -th order tensor X ∈ RI1×...×IN with

X(i1, . . . , iN) = Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N ).

• If an N -th order tensor X has CP rank F , then it can be uniquely expressed as,

X(i1, . . . , iN) =

F∑
f=1

λ(f)

N∏
n=1

An(in, f), X = Jλ,A1, . . . ,ANK.

where An ∈ RIn×F and λ ∈ RF .
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Tensor Decomposition and Joint PMF

• The key point in [Kargas et al., 2018] is that any joint PMF admits a naive
Bayes model representation;

H

Z1 Z2
... ZN

• i.e., It can be generated from a latent variable model with just one hidden variable.

Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N ) =

F∑
f=1

Pr(H = f)Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N |H = f)

=

F∑
f=1

Pr(H = f)

N∏
n=1

Pr(Zn = z(in)n |H = f)
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Tensor Decomposition and Joint PMF

• Putting together,

X(i1, . . . , iN) = Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N ). (1)

LHS of (1): X(i1, . . . , iN) =

F∑
f=1

λ(f)

N∏
n=1

An(in, f),

RHS of (1): Pr(Z1 = i1, . . . , ZK = iN) =

F∑
f=1

Pr(H = f)

N∏
n=1

Pr(Zn = z(in)n |H = f)

Decomposition of joint PMF tensor can identify the latent factors An’s and λ,

An(in, f) = Pr(Zn = in|H = f), λ(f) = Pr(H = f). (2)
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Joint PMF Learning from Third-order Marginals1

1[Kargas et al., 2018]
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Challenges in the Existing Approach

• The result in [Kargas et al., 2018] is inspiring, but a couple of major hurdles exist
for practical implementations.

• High sample complexity: Estimating three-dimensional marginals Pr(ij, ik, i`)
is not easy, since one needs many co-occurrences of three random variables.

• High computational complexity: Tensor decomposition is a hard computation
problem [Hillar and Lim, 2013]—and the optimization problem involves many
tensors.
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Challenges in the Existing Approach

• The result in [Kargas et al., 2018] is inspiring, but a couple of major hurdles exist
for practical implementations.

• High sample complexity: Estimating three-dimensional marginals Pr(ij, ik, i`)
is not easy, since one needs many co-occurrences of three random variables.

• High computational complexity: Tensor decomposition is a hard computation
problem [Hillar and Lim, 2013]—and the optimization problem involves many
tensors.

Can we address these challenges?
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Proposed Approach
• To advance the task of joint PMF recovery from marginal distributions, we

propose a pairwise marginal-based approach.

Proposition 1: Consider discrete RVs Z1, . . . , ZN . Assume I1 = . . . = IN = I.
Denote p ∈ (0, 1] as the probability that an RV is observed. Let S be the number
of available data samples. Assume that min ((2/S) log(2/δ), 1) ≤ p ≤ 1. Then, with
probability at least 1− δ,

‖Xjk − X̂jk‖F ≤
√
2(1+
√

log(2/δ))/(p
√
S)

‖Xjk` − X̂jk`‖F ≤
√
2I(1+

√
log(2I/δ))/(p3/2

√
S)

hold for any distinct j, k, `, where X̂jk and X̂jk` represent the empirical estimate
of Xjk and Xjk` respectively, obtained via sample averaging.

• With the same amount of data, the second-order statistics can be estimated to a
much higher accuracy, compared to the third-order ones.
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Proposed Approach

• Consider any pairwise marginal, Pr(ij, ik) =
∑F
f=1 Pr(f)Pr(ij|f)Pr(ik|f)

• Since we can associate

Xjk(ij, ik) = Pr(ij, ik),

Aj(ij|f) = Pr(ij|f), λ(f) = Pr(f),

Xjk = AjD(λ)A>k, where D(λ) = Diag(λ).

• Hence, the key information for recovering the joint PMF (i.e., An’s and λ) still
shows up in the pairwise marginals.
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Proposed Approach

• Consider any pairwise marginal, Pr(ij, ik) =
∑F
f=1 Pr(f)Pr(ij|f)Pr(ik|f)

• Since we can associate

Xjk(ij, ik) = Pr(ij, ik),

Aj(ij|f) = Pr(ij|f), λ(f) = Pr(f),

Xjk = AjD(λ)A>k, where D(λ) = Diag(λ).

• Hence, the key information for recovering the joint PMF (i.e., An’s and λ) still
shows up in the pairwise marginals.

However, there are some challenges to be addressed in pairwise-marginal
based approach.
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Identifiability of Matrix Factorization

• Key idea used for the triple-based approach in [Kargas et al., 2018] is that tensors
admit unique CPD, under mild conditions.

• Pairwise distributions such as Xjk = AjD(λ)AT
k are matrices, and low-rank

matrix decomposition is in general nonunique.

• A natural way in our case would be to employ NMF (nonnegative matrix
factorization) tools, since the latent factors are all nonnegative.
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Seperability and Sufficiently Scattered

• Assume that the nonnegative matrix X is generated by the product of two latent
matrices, i.e., X = WH>, where W ∈ RL×F and H ∈ RK×F , W ≥ 0,H ≥ 0.

Seperability: [Donoho and Stodden, 2003] If H ≥ 0, and Λ = {l1, . . . , lF}
such that H(Λ, :) = Σ holds, where Σ = Diag(α1, . . . , αF ) and αf > 0,
then, H satisfies the separability condition. When Λ = {l1, . . . , lF} satisfies
‖H(lf , :)− ef‖2 ≤ ε for f = 1, . . . , F , H is called ε-separable.

Sufficiently scattered: [Huang et al.,2014] Assume that H ≥ 0 and C ⊆
cone{H>} where C = {x ∈ RF | x>1 ≥

√
F − 1‖x‖2} is a second-order cone.

In addition, assume that cone{H>} 6⊆ cone{Q} for any orthonormal Q ∈ RK×K
except for the permutation matrices. Then, H is called sufficiently scattered.
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𝑒𝑒 3
=

0
0

1
T C

• If one of W and H satisfies the separability condition and the other has full
column rank, we can provably identify W and H up to scaling and permutation
ambiguities [Gillis and Vavasis, 2014, Arora et al., 2013].

• If W and H are both sufficiently scattered, then the model X = WH> is
unique up to scaling and permutation ambiguities [Huang et al., 2014].
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Seprability and Sufficiently Scattered

• Our goal is to identify An and λ from the available pairwise marginals Xjk =

AjD(λ)A>k’s using NMF model.

Xjk = Aj︸︷︷︸
W

D(λ)A>k︸ ︷︷ ︸
H>

(3)

• Note that F is the inner dimension of Aj ∈ RIj×F ,Ak ∈ RIk×F and the
dimension of D(λ) ∈ RF×F .

• Since F could be much larger than the Ij’s. i.e., F � min{Ij, Ik} in general,
separability or sufficiently scattered cannot be achieved.
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When can NMF be unique?

• Intuitively, if one has many rows in H ≥ 0, then there will be some rows
approaching the extreme rays of the nonnegative cone.

• This concept was formalized [Ibrahim et al., 2019]:

Lemma 1: Let ρ > 0, ε > 0, and assume that the rows of H ∈ RL×F are
generated within the (F − 1)-probability simplex uniformly at random (and then

nonnegatively scaled). If L ≥ Ω
(
ε−2(F−1)

F log
(
F
ρ

))
, then, with probability greater

than or equal to 1 − ρ, there exist rows of H indexed by l1, . . . lF such that
‖H(lf , :)− e>f‖2 ≤ ε, f = 1, . . . , F.

• Also, [Ibrahim et al., 2019] proposes that more rows in H increases the
probability that H is sufficiently scattered, and the probability is higher
than that of H being separable, under the same L.
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Proposed Approach

• Consider a splitting of the indices of the N variables, i.e., S1 = {`1, . . . , `M} and
S2 = {`M+1, . . . , `N} such that S1 ∪ S2 = {1, . . . , N}, S1 ∩ S2 = ∅.

• Then, we construct the following matrix:

X̃ =

X`1`M+1
. . . X`1`N

... ... ...
X`M`M+1

. . . X`M`N


=

A`1
...

A`M

D(λ)

︸ ︷︷ ︸
W

[A>`M+1
, . . . ,A>`N ]︸ ︷︷ ︸
H>

.

(4)

• The idea is to construct X̃ such that F ≤ min{MI, (N −M)I} so that W and
H may satisfy the conditions for NMF identifiability.
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Proposed Approach

• Consider a splitting of the indices of the N variables, i.e., S1 = {`1, . . . , `M} and
S2 = {`M+1, . . . , `N} such that S1 ∪ S2 = {1, . . . , N}, S1 ∩ S2 = ∅.

• Then, we construct the following matrix:

X̃ =

X`1`M+1
. . . X`1`N

... ... ...
X`M`M+1

. . . X`M`N


=

A`1
...

A`M

D(λ)

︸ ︷︷ ︸
W

[A>`M+1
, . . . ,A>`N ]︸ ︷︷ ︸
H>

.

(5)

• The idea is to construct X̃ such that F ≤ min{MI, (N −M)I} so that W and
H may satisfy the conditions for NMF identifiability.

However, there are a couple of caveats.
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Proposed Approach

• Finding a suitable splitting of S1,S2 such that W and H are sufficiently scattered
is highly nontrivial [Huang et al.,2014].

• To address this challenge, we consider the following coupled NMF problem:

minimize
{An}Nn=1 λ

∑
j,k∈Ω

dist
(
Xjk || AjD(λ)A>k

)
subject to 1>Aj = 1>, Aj ≥ 0, 1>λ = 1, λ ≥ 0

where Ω contains the index set of (j, k)’s such that j < k and the joint PMF
Pr(ij, ik) is accessible.
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Proposed Approach

• Finding a suitable splitting of S1,S2 such that W and H are sufficiently scattered
is highly nontrivial [Huang et al.,2014].

• To address this challenge, we consider the following coupled NMF problem:

minimize
{An}Nn=1 λ

∑
j,k∈Ω

dist
(
Xjk || AjD(λ)A>k

)
(7a)

subject to 1>Aj = 1>, Aj ≥ 0, 1>λ = 1, λ ≥ 0 (7b)

where Ω contains the index set of (j, k)’s such that j < k and the joint PMF
Pr(ij, ik) is accessible.

Next, our task is to analyze under what conditions (7) can identify Aj’s and
λ.
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Theorem 1 - Recoverability

Theorem 1: Assume that that Pr(ij, ik)’s for j, k ∈ Ω are available and that
Pr(f) 6= 0 for f = 1, . . . , F . Suppose that there exists S1 = {`1, . . . , `M} and
S2 = {`M+1, . . . , `Q} such that Q ≤ N and S1 ∪ S2 ⊆ {1, . . . , N}, S1 ∩ S2 = ∅.
Also assume the following conditions hold:

• the matrices [A>`1, . . . ,A
>
`M

]> and [A>`M+1
, . . . ,A>`Q]> are sufficiently scattered ;

• all pairwise marginal distributions Pr(ij, ik)’s for j ∈ S1 and k ∈ S2 are available;

• every T -concatenation of An’s, i.e., [A>n1, . . . ,A
>
nT

]>, is a full column rank matrix,
if In1 + . . .+ InT ≥ F ;

• for every j /∈ S1 ∪ S2 there exists a set of rt ∈ S1 ∪ S2 for t = 1, . . . , T such that
Pr(ij, irt) or Pr(irt, ij) are available.

Then, solving Problem (7) recovers Pr(ij|f) and Pr(f) for j = 1, . . . , N, f =
1, . . . , F , thereby the joint PMF Pr(i1, . . . , iN).
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• The criterion spares one the effort for first finding S1 and S2 and then constructing
the matrix X̃.

• Theorem 1 does not impose any restrictions on F , and thus can be very general.
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• The criterion spares one the effort for first finding S1 and S2 and then constructing
the matrix X̃.

• Theorem 1 does not impose any restrictions on F , and thus can be very general.

Our analysis shows that a stronger identifiability guarantee can be derived if
F is below a certain threshold.
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Theorem 2 : Enhanced Recoverability

Theorem 2: Assume that Pr(f) 6= 0 for f = 1, . . . , F , and that Pr(ij, ik)’s for all
j, k are available and Pr(ik, ij) = Pr(ij, ik). If
i) Z = [A>1, . . . ,A

>
N ]>∈ RNI×F is separable or sufficiently scattered

ii) F ≤ (N − 1)I − 1,
then, solving the problem in (7) recovers Pr(ij|f) and Pr(f) for j = 1, . . . , N, f =
1, . . . , F , thereby the joint PMF Pr(i1, . . . , iN).

• In Theorem 1, the recoverability of the joint PMF depends on if W =
[A>`1, . . . ,A

>
`M

]> and H = [A>`M+1
, . . . ,A>`N ]> are sufficiently scattered.

• However, under Theorem 2, the recoverability of the joint PMF depends on Z
being scattered/seperable.

• Having more rows increases the probability of being separable/sufficiently scat-
tered, thus stronger guarantee for identifibaility.
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Algorithm for Coupled NMF

• Recall the coupled NMF problem

minimize
{An}Nn=1 λ

∑
j,k∈Ω

dist
(
Xjk || AjD(λ)A>k

)
subject to 1>Aj = 1>, Aj ≥ 0, 1>λ = 1, λ ≥ 0

where Ω contains the index set of (j, k)’s such that j < k and the joint PMF
Pr(ij, ik) is accessible.

• To handle this, we propose a simple procedure based on block coordinate descent
(BCD).

• To be specific, we cyclically minimize the constrained optimization problem w.r.t.
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Ak, when fixing Aj for all j 6= k and λ.

minimize
Ak

∑
j∈Ωk

dist
(
Xjk || AjD(λ)A>k

)
(9a)

subject to 1>Ak = 1>, Ak ≥ 0, (9b)

where Ωk is the index set of j such that Pr(ij, ik) is available.

• In our work, we adopt the KL divergence since it is natural for measuring distance
between PMFs.

• Many off-the-shelf convex optimization tools can be employed to solve the above,
e.g., mirror descent.

• We show that with a carefully designed initialization scheme, accurately recovering
joint PMFs from pairs is viable.
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Gram–Schmidt-like Initialization

• We also propose a simple algebraic algorithm for identifying An and λ.

• Recall the splitting of random variables and construction of matrix X̃.

X̃ =

X`1`M+1
. . . X`1`N

... ... ...
X`M`M+1

. . . X`M`N


=

A`1
...

A`M

D(λ)

︸ ︷︷ ︸
W

[A>`M+1
, . . . ,A>`N ]︸ ︷︷ ︸
H>

.

(10)

• Let us assume W is full rank and H is separable.
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• Under the separability condition, we have H(Λ, :) = Σ = Diag(α1, . . . , αF ) and

WΣ = X̃(Λ, :). (11)

• i.e, Estimation of W is an index identification task and can be achieved by using
Successive projection algorithm (SPA) [ Araújo et al.,2001]

• SPA is very scalable- a Gram-Schmitt-like algorithm, which only consists of norm
comparison and orthogonal projection.

• SPA is robust to noise and slight violation of separability.
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• A`n ∈ RI`n×F , n ∈ {1, . . . ,M} can be identified upto column permutations (Â`n = A`nΠ)

since

W =

A`1...

A`M

D(λ), 1
>
Ak = 1

>
, Ak ≥ 0 (12)

• A`n for n ∈ {M + 1, . . . , N} can be identified upto column permutations, since H matrix

can be estimated using (constrained) least squares, arg min
H≥0

‖X̃ −WH>‖2F

• λ can be identified as λ̂ = (H � W̃ )†vec(X̃) = Πλ, since

X̃ =

A`1...

A`M


︸ ︷︷ ︸

W̃

D(λ) [A
>
`M+1

, . . . ,A
>
`N

]︸ ︷︷ ︸
H>

.
(13)

• Named as CNMF-SPA – scalable algorithm, a good choice for initialization.
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Theorem 3 - Accuracy of CNMF-SPA
Theorem 3: Let p and S be the probability of each RV being observed in one
realization of Pr(Z1, . . . , ZN) and the number of total realizations. Suppose that

In = I for all n. Assume that ‖X̂ij(:, q)‖1 ≥ η > 0 for any q, i, j, and that
the rows of An’s are generated from the probability simplex uniformly at random
and then positively scaled. Also assume that min( 2

S log(4/δ), 1) ≤ p ≤ 1, N =

M + Ω(Mκ3(W )

I
√
F

log
(
F
δ

)
) and F = O

(
ηp
√
S

MIκ2(W )
√

log(1/δ)
min

(
σmin(W )√

M
, σmax(H)

4
√
N−M

))
.

Then, applying CNMF-SPA on X̃ with S1 = {1, . . . ,M} and S2 = {M + 1, . . . , N}
outputs

‖An − Ân‖2 = O
(
κ3(W )MF

√
Lη−1ζ

)
, ∀n,

‖λ̂− λ‖2 = O
(
κ3(W )κ(H)MF

√
MKη−1ζ

)
,

with probability at least 1− δ, where L = MI, K = (N −M)I, W and H follow

the definition in (13) and ζ = max

(√
Ilog(2/δ)

ηp
√
S

, σmin(W )

κ2(W )M
√
F

)
.

Feb 2020 EECS, Oregon State University 36



Experiments: Synthetic Data

• We consider N = 5 RV’s where each variable takes I = 10 discrete values.

• The columns of the conditional PMF matrices (factor matrices) An ∈ RIn×F and
the prior probability vector λ ∈ RF are generated with F = 5.

• The ε-separability condition on H is ensured with ε = 0.1.

• We generate S realizations of the joint PMF by randomly hiding each variable
realization with observation probability p = 0.5.
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Experiments: Synthetic Data

Table 1: MSE & MRE for N = 5, F = 5, I = 10, p = 0.5

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA MSE 0.0703 0.0257 0.0213 0.0207
CNMF-OPT MSE 0.0520 0.0234 0.0210 0.0206

CNMF-SPA-EM MSE 0.0580 0.0228 0.0209 0.0206
RAND-EM MSE 0.0923 0.0415 0.0447 0.0476

CTD MSE 0.1644 0.0253 0.0212 0.0207

CNMF-SPA MRE 0.7897 0.3171 0.1104 0.0338
CNMF-OPT MRE 0.6797 0.2316 0.0769 0.0235

CNMF-SPA-EM MRE 0.6847 0.2095 0.0711 0.0217
RAND-EM MRE 0.8304 0.3952 0.2926 0.3179

CTD MRE 0.9137 0.2993 0.0959 0.0313

• CNMF-SPA-EM : EM algorithm proposed in [Yeredor and Haardt,2019] initial-
ized using CNMF-SPA, CTD : Coupled Tensor Decomposition based algorithm
proposed in [Kargas et al.,2018].
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Experiments: Synthetic Data

Table 2: MSE & MRE for N = 15, F = 10, I = 10, p = 0.5

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA MSE 0.1183 0.1030 0.1063 0.1041
CNMF-OPT MSE 0.0218 0.0042 0.0022 0.0020

CNMF-SPA-EM MSE 0.0894 0.0110 0.0056 0.0018
RAND-EM MSE 0.0376 0.0112 0.0149 0.0069

CTD MSE 0.0329 0.0359 0.0404 0.0355
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Experiments: Recommender Systems

• We test the approaches using the MovieLens 20M dataset [Harper and Konstan,
2015]. Ratings ranges in {1, 2, . . . , 5}.

• We choose different movie genres, namely, action, animation and romance subsets
and each subset contains 30 popular movies. Hence, for every subset, N = 30.

• We create the validation and testing sets by randomly hiding 20% and 30% of
the dataset.

• The remianing 50% is used for training (learning joint PMF in our approach).

• We predict the rating for a movie N , by user k via computing
E[iN |rk(1), . . . , rk(N−1)] (i.e., using the MMSE estimator), where rk(i) denotes
the rating of movie i by user k.
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Recommender Systems

Table 3: MovieLens Action Movies set

Algorithm RMSE MAE Time (s)
CNMF-SPA 0.8497±0.0114 0.6663±0.0059 0.031
CNMF-OPT 0.8167±0.0035 0.6321±0.0040 70.018

CNMF-SPA-EM 0.7840±0.0025 0.5991±0.0031 2.424
CTD 0.8770±0.0088 0.6649±0.0076 52.253
BMF 0.8011±0.0012 0.6260±0.0013 46.637

Global Average 0.9468±0.0018 0.6956±0.0017 –
User Average 0.8950±0.0010 0.6825±0.0010 –

Movie Average 0.8847±0.0018 0.6982±0.0012 –
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Recommender Systems

Table 4: MovieLens Animation Movies set

Algorithm RMSE MAE Time (s)
CNMF-SPA 0.8705±0.0095 0.6798±0.0060 0.028
CNMF-OPT 0.8124±0.0031 0.6241±0.0041 61.018

CNMF-SPA-EM 0.8170±0.0075 0.6317±0.0086 2.424
CTD 0.8300±0.0053 0.6335±0.0029 48.253
BMF 0.8408±0.0023 0.6553±0.0015 46.637

Global Average 0.9371±0.0021 0.7042±0.0014 –
User Average 0.8850±0.0009 0.6632±0.0011 –

Movie Average 0.9027±0.0019 0.6900±0.0013 –
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Recommender Systems

Table 5: MovieLens Romance Movies set

Algorithm RMSE MAE Time (s)
CNMF-SPA 0.9280±0.0066 0.7376±0.0076 0.032
CNMF-OPT 0.9076±0.0014 0.7123±0.0029 60.762

CNMF-SPA-EM 0.9057±0.0052 0.7106±0.0049 1.881
CTD 0.9498±0.0085 0.7416±0.0054 47.010
BMF 0.9337±0.0007 0.7463±0.0009 31.823

Global Average 1.0019±0.0007 0.8078±0.0008 –
User Average 1.0195±0.0007 0.7862±0.0008 –

Movie Average 0.9482±0.0007 0.7599±0.0007 –
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Experiments: Classification

• We use several UCI datasets in the classification tasks.

• We split each dataset into training, validation and testing sets in the ratio of
50 : 20 : 30.

• We estimate the joint PMF of the features and the label using the training set,
and then predict the labels on the testing data by constructing an MAP predictor.

• For each dataset, we perform 20 trials with randomly partitioned train-
ing/testing/validation sets.
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Table 6: UCI Dataset Votes

Algorithm Accuracy (%) Time (sec.)
CNMF-SPA 88.39+/-2.61 0.005
CNMF-OPT 95.28+/-3.84 4.963

CNMF-SPA-EM 92.13+/-3.13 0.016
CTD 90.76+/-3.16 2.056
SVM 94.42+/-2.19 0.021

Linear Regression 95.11+/-1.77 0.020
Neural Net 93.05+/-3.30 0.106
SVM-RBF 90.38+/-3.74 0.009

Naive Bayes 88.93+/-2.76 0.018
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Classification

Table 7: UCI Dataset Car

Algorithm Accuracy (%) Time (s)
CNMF-SPA 69.88±1.52 0.008
CNMF-OPT 85.29±2.37 2.306

CNMF-SPA-EM 86.27±2.09 0.014
CTD 84.92±2.12 0.845
SVM 84.07±1.59 0.315

Linear Regression 81.13±2.14 0.083
Neural Net 83.89±2.90 0.570
SVM-RBF 76.25±2.56 1.039

Naive Bayes 84.09±2.50 0.048
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Classification

Table 8: UCI Dataset Credit

Algorithm Accuracy (%) Time (s)
CNMF-SPA 86.38±2.25 0.009

CNMF-OPT [Proposed] 86.41±2.69 4.985
CNMF-SPA-EM 85.79±2.07 0.012

CTD 86.13±2.41 3.774
SVM 85.99±2.04 0.176

Linear Regression 86.37±2.17 0.073
Neural Net 85.94±2.11 0.515
SVM-RBF 82.89±2.77 0.022

Naive Bayes 85.50±2.42 0.046
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Conclusion

• We proposed a new framework for recovering joint PMF of any number of
discrete random variables from marginal distributions.
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• Our approach only uses two-dimensional marginals, which naturally has
reduced-sample complexity and computational burden.
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reduced-sample complexity and computational burden.

• We showed that under certain conditions, the recoverability of joint PMF from
pairwise marginals can be provably guaranteed.

• We proposed a coupled NMF formulation as the optimization surrogate for this
task, and employed a Gram-Schmitt-like scalable algorithm as its initializa-
tion.
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Conclusion

• We proposed a new framework for recovering joint PMF of any number of
discrete random variables from marginal distributions.

• Our approach only uses two-dimensional marginals, which naturally has
reduced-sample complexity and computational burden.

• We showed that under certain conditions, the recoverability of joint PMF from
pairwise marginals can be provably guaranteed.

• We proposed a coupled NMF formulation as the optimization surrogate for this
task, and employed a Gram-Schmitt-like scalable algorithm as its initializa-
tion.

• We showed that the initialization method is effective even under the finite-
sample case and can empirically enhance performance of an EM algorithm.
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Thank You
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Back up Slides
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Coupled Tensor Decomposition

• Kargas et al. showed if F ≤ (bN3 cI+1)2

16 , where I = I1 = . . . = IN , recoverability of
the joint PMF can be guaranteed almost surely, if An’s follow any joint absolutely
continuous distribution [Kargas et al., 2018].

• To estimate the An’s and λ, the following estimator was constructed:

minimize
{Ak}Kk=1

,λ

K∑
`=1

K∑
m=`+1

K∑
n=m+1

∥∥X`,m,n − Jλ,A`,Am,AnK
∥∥2
F

subject to 1>Ak = 1>, Ak ≥ 0, ∀k

1>λ = 1, λ ≥ 0.

• An alternating least squares (ALS) based algorithm was proposed to handle the
above.
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• Note that the constraints are added because the columns of An are conditional
PMFs and λ is the PMF of the latent variable
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Pairwise Approach - Main Hurdles

• Identifiability

– A natural thought to handle the identifiability problem of Xjk = AjD(λ)A>k
would be to employ NMF (nonnegative matrix factorization) tools, since
the latent factors are all nonnegative.

• High rank

– The uniqueness of NMF models holds only if F ≤ min{Ij, Ik} for Xjk =

AjD(λ)A>k ∈ RIj×Ik.
– Note that F is the inner dimension of Aj ∈ RIj×F ,Ak ∈ RIk×F and the

dimension of D(λ) ∈ RF×F .
– F could be much larger than the Ij’s. i.e., F � min{Ij, Ik}.
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Pairwise Approach - Main Hurdles

• Identifiability

– A natural thought to handle the identifiability problem of Xjk = AjD(λ)A>k
would be to employ NMF (nonnegative matrix factorization) tools, since
the latent factors are all nonnegative.

• High rank

– The uniqueness of NMF models holds only if F ≤ min{Ij, Ik} for Xjk =

AjD(λ)A>k ∈ RIj×Ik.
– Note that F is the inner dimension of Aj ∈ RIj×F ,Ak ∈ RIk×F and the

dimension of D(λ) ∈ RF×F .
– F could be much larger than the Ij’s. i.e., F � min{Ij, Ik}.

This means that we have to judiciously use the available NMF results to
argue for joint PMF recoverability.
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SPA based Algorithm

Strong assumption 
(Separability)

Hard to select 
optimal splitting

Scalability

Robust to noise

AdvantagesLimitations

A good 
choice as an 
initialization 

algorithm
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Synthetic Data Simulations

• We consider N = 10 random variables with n-th variable taking I discrete values.

• The rank F is fixed to be 5.

• The columns of the conditional PMF matrices (factor matrices) An ∈ RIn×F and
the prior probability vector λ ∈ RF are generated using dirichlet distribution with
parameter α = 1 ∈ RF .

• We assume that the pairwise marginals of the random variablesXjk’s are available
such that Xjk = AjD(λ)A>k for all j, k ∈ {1, . . . , N}, j 6= k.

• We run the experiment for different values of I ranging from 5 to 25.

• For each I, we run 10 Monte Carlo simulations by randomly generating the factor
matrices An and λ.
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Figure 1: MSE for N = 10, F = 5 with different values of I
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Joint PMF Learning Using Third Order Marginals

• Direct CPD of X is not possible since estimating X is difficult. However,
estimating the joint PMF of a subset of random variables can be possible.

• Suppose third-order marginals are available Pr(ij, ik, i`), which can be expressed
as [Kargas et al., 2018]

Pr(ij, ik, i`) =

F∑
f=1

Pr(f)Pr(ij|f)Pr(ik|f)Pr(i`|f).

• Let Xjk`(ij, ik, i`) = Pr(ij, ik, i`). Then, we have Xjk` = [[λ,Aj,Ak,A`]],

• If the Xjk`’s admit essentially unique CPD, then An’s and λ can be identified
from the marginals.
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