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Graph Clustering (GC)

» Graph Clustering (GC) is a core analysis
technique used for network data:

» Social Networks, Ecological Networks, Transportation
Networks, Brain Networks etc.

» Real networks are often available with partial
observation of its edges due to:

» Massive Data, Cost, Security/Privacy

Existing Work with Provable Guarantees

A number of works [Korlakai Vinayak et al., 2014; Korlakai Vinayak and Hassibi, 2016;

Chen et al., 2014|, which proposed GC under partial edge observation, features
single membership identification
» the entities often admit mixed membership in real-world networks

random query based edge acquisition scheme
» may not be easy to implement in some applications; e.g., in field surveys and in networks with
hidden or intentionally removed edges

convex optimization based problem formulation
» hard to scale up for real-world large graphs

We aim to design a systematic edge query scheme for mixed membership
identification via a lightweight algorithm with provable guarantees.

Mixed Membership Model

N Entities
OO0O000o0o0 .... OOoooooo;d

» [ he nth entity belongs to kth cluster with prob. my,
> 2521 My, =1, my, > 0. K Clusters

>, = [Ny, ..., Mg, is called as the
membership vector of n.

> M = [m,,...,my] € R is called as the
membership matrix.

» B ¢ REXE js cluster-cluster interaction matrix.

» The edges of the graph are represented using adjacency matrix A ¢ {0, 1}V*4:

A(i,§) ~ Bernoulli (P(i,5)), P=M'BM, 1'M=1", M >0.

Proposed Systematic Edge Query

SU---US,={1,...,N}
SiNS, =0, V+m

Adjacency Submatrix between Sy and §,, — A/, € RISex|Sm

Edge Query Principle (EQP)
e For every ¢ € [L], K < |S/| holds. Let m, € [L] and {¢,}%, = [L].
e For every /,, there exists a pair of indices m, and ¢, where ¢, ## {, such that
the edges from the blocks A, ,,, and A, _ ., are queried.
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Algorithm Design for Learning M under EQP

Some examples for EQP patterns with NV = 1000, X = 5 and L = 10.

m

Step 1: Estimate U € R"*" such that range(U) = range(M ')
Step 2: Estimate M from U via structured matrix factorization (SMF)

Consider L =3 and A,,,= P,,,, = M,/ BM,, :

P ,=M,BM,, P,o=M, BM,,
P,,=M,BM,, P;, = M, BM, .

> Define C, .= [P, P,),]" and C := [P}, P;|]'. Consider their top-/K SVD:

c.=[U'"\U'I'sv' C,=[U,U']'sV"
» The bases of range( M), range(M,) and range(M;) are:
U =M'BO, U,=M,BO, Us;=M,B®, |®+£0O ingeneral.
» We need a certain U; such that range([U/, U, ,U;|") = range([M, M>, M5]").

» \We can obtain such Uj; as below:

U, = UUSU, = M, B® x (M, B®)' x M, BO = M, B6.

» To estimate U, this “subspace stitching" idea is recursively applied over the
queried blocks A, ,, and Ay, forr=1... L —1.

U =GM, M >0, 1'M=1"" G e R**%is nonsingular.

» Successive Projection Algorithm (SPA) [Gillis and Vavasis, 2014] can provably
identify M in K steps, if GG is nonsingular and if there exists {n1,...,nx} such
that M (:,n;) = e; (pure nodes).

Algorithm 1: Proposed Algorithm
input : {A,, ¢}, L, K
1 divide the blocks as {Ag,,,mr}f’:p {Afr+1,mr}‘f=_11
(where £, # £r11, {€r}rz1 = [L], mr € [L];
2 T+ |L/2];
3 Cp & [AgT:mT ’ A‘-frT+1=mT
s [Ud,Ugy,,]"2VT « svdk(Cr);
5 Uref — UET-{—I;
6 forr=T+1:1:L—1do
i ] 2 5
7 (E'ir FlAET,mT ) A€T+1,mr] ’
9 U,y 6€r+1 ﬁgr Uret ; \
10 Uref UET,+1;
end
12 &rer — gl
forr=T:—-1:2do
14 C: & [A] . . Ag;_l,m,,]T;
15 [UE-,';, Ug:_l]TEerrT +— svdk (C);
16 Ug._, + ﬁgr_ﬁ,}r Ures ;
17 Uref = Uﬂr_l;
18 end

"

Estimation of U

20 apply SPA on U to estimate M. > Estimation of M from U

output: Estimated membership matrix M.

Identifiability Results

Proposition 1: (Subspace Ildentifiability - Ideal Case)

Assume that Ay, = Py, = METBMm c RISI*ISnl holds true for all {.m €
L] and rank(M ) = rank(B) = K. Suppose that the A/,,'s are queried
according to the proposed EQP. Then, the output U by Algorithm 1 satisfies

range(U) = range(M ).
Proposition 2: (Subspace Identifiability - Binary Observation Case)

Let p := max; ; P(¢,j) be the maximal entry of P. Suppose that p =

Q(Llog(N/L)/N) and L = O(pN/d) where d is the maximal degree of all
the nodes. Also assume that N = () (max L, (Kigziﬁg)(B))) . Then, the output
U satisfies the following with probability of at least 1 — O(L*/N):
(Kv*)"*x(B )ﬁ]

Umin(B)W

where O € R**% s an orthogonal matrix.

U -UO|r=0

Larger L makes the error bound looser, but larger L. means that only
fewer queries need to be made, and thus less resource consuming.

Experiment Results

» Synthetic Data Experiment:

» Baselines: GeoNMF [Mao et al., 2017], CD-MVSI [Mao et al., 2017]
» Parameters: K =5, L = 10 with diagonal query pattern

Graphldeal Case (A = P) Binary Observation Case

Size Proposed Proposed | GeoNMF CD-MVSI

N Dist Dist | MSE MSE MSE
1 x1 7.34x1 0.342 0.0475 0.0554 @ 0.0839
2 x 1 2.80x1 0.209 0.0198 0.0386 @ 0.0943
4% 1 1.22x1071 0.194 0.0123 0.0341 | 0.0955
3 % 1 1.12 x10~"*  0.101 0.0066 0.0261 = 0.0924

» Real Data Experiment - Microsoft Academic Graph:
> MAG1 (N = 37680, K = 3); MAG2 (N = 19457, K = 3); L = 10

Datasets Proposed GeoNMF CD-MVSI
Avg. SRC Time(s.) Avg. SRC Time(s.)|Avg. SRC Time(s.)
MAG1 | 0.125 @ 0.26 0.122 1.79 0.089 0.59
MAG2 @ 0.441  0.23 0.240 4.66 0.249 0.53
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