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Graph Clustering (GC)

IGraph Clustering (GC) is a core analysis
technique used for network data:
I Social Networks, Ecological Networks, Transportation

Networks, Brain Networks etc.
IReal networks are often available with partial
observation of its edges due to:
IMassive Data, Cost, Security/Privacy

Existing Work with Provable Guarantees

A number of works [Korlakai Vinayak et al., 2014; Korlakai Vinayak and Hassibi, 2016;
Chen et al., 2014], which proposed GC under partial edge observation, features
� single membership identification
I the entities often admit mixed membership in real-world networks
� random query based edge acquisition scheme
Imay not be easy to implement in some applications; e.g., in field surveys and in networks with

hidden or intentionally removed edges
� convex optimization based problem formulation
I hard to scale up for real-world large graphs
We aim to design a systematic edge query scheme for mixed membership

identification via a lightweight algorithm with provable guarantees.

Mixed Membership Model

IThe nth entity belongs to kth cluster with prob. mkn
I ∑K

k=1mk,n = 1, mk,n ≥ 0.
Imn = [m1,n, . . . ,mK,n]> is called as the
membership vector of n.
IM = [m1, . . . ,mN ] ∈ RK×N is called as the
membership matrix.
IB ∈ RK×K is cluster-cluster interaction matrix.

IThe edges of the graph are represented using adjacency matrix A ∈ {0, 1}N×N :
A(i, j) ∼ Bernoulli (P (i, j)) , P = M>BM , 1>M = 1>, M ≥ 0.

Proposed Systematic Edge Query

S1 ∪ · · · ∪ SL = {1, . . . , N}
S` ∩ Sm = ∅, ∀` 6= m

Adjacency Submatrix between S` and Sm =⇒ A`,m ∈ R|S`|×|Sm|

Edge Query Principle (EQP)
• For every ` ∈ [L], K ≤ |S`| holds. Let mr ∈ [L] and {`r}Lr=1 = [L].
• For every `r, there exists a pair of indices mr and `r+1 where `r+1 6= `r such that
the edges from the blocks A`r,mr

and A`r+1,mr
are queried.

Algorithm Design for Learning M under EQP

Some examples for EQP patterns with N = 1000, K = 5 and L = 10.

Step 1: Estimate U ∈ RN×K such that range(U ) = range(M>)
Step 2: Estimate M from U via structured matrix factorization (SMF)
Consider L = 3 and A`,m = P`,m = M>

` BMm :

P1,2 = M>
1 BM2 , P2,2 = M>

2 BM2 ,

P2,1 = M>
2 BM1 , P3,1 = M>

3 BM1 .
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IDefine C1 := [P>1,2,P>2,2]> and C2 := [P>2,1,P>3,1]>. Consider their top-K SVD:

C1 = [U>1 ,U>2 ]>ΣV >, C2 = [ ˜
U>2 ,

˜
U>3 ]>Σ̃ ˜

V >.

IThe bases of range(M>
1 ), range(M>

2 ) and range(M>
3 ) are:

U1 = M>
1 BΘ, U2 = M>

2 BΘ,
˜
U3 = M>

3 BΦ, Φ 6= Θ in general.
IWe need a certain U3 such that range([U>1 ,U>2 ,U>3 ]>) = range([M1,M2,M3]>).
IWe can obtain such U3 as below:

U3 := ˜
U3

˜
U †2 U2 = M>

3 BΦ×
M>

2 BΦ
† ×M>

2 BΘ = M>
3 BΘ.

ITo estimate U , this “subspace stitching" idea is recursively applied over the
queried blocks A`r,mr

and A`r+1,mr
for r = 1, . . . , L− 1.

U>= GM , M ≥ 0, 1>M = 1>, G ∈ RK×K is nonsingular.
I Successive Projection Algorithm (SPA) [Gillis and Vavasis, 2014] can provably

identify M in K steps, if G is nonsingular and if there exists {n1, . . . , nK} such
that M (:, nk) = ek (pure nodes).

Identifiability Results

Proposition 1: (Subspace Identifiability - Ideal Case)

Assume that A`,m = P`,m = M>
` BMm ∈ R|S`|×|Sm| holds true for all `,m ∈

[L] and rank(M ) = rank(B) = K. Suppose that the A`,m’s are queried
according to the proposed EQP. Then, the output ̂

U by Algorithm 1 satisfies
range( ̂

U ) = range(M>).

Proposition 2: (Subspace Identifiability - Binary Observation Case)

Let ρ := maxi,j P (i, j) be the maximal entry of P . Suppose that ρ =
Ω(L log(N/L)/N) and L = O(ρN/d) where d is the maximal degree of all
the nodes. Also assume that N = Ω

max
L2, (Kγ2)Lρκ2(B)

σ2
min(B)


 . Then, the output

̂
U satisfies the following with probability of at least 1−O(L2/N):

‖ ̂
U −UO‖F = O


(Kγ2)L/2κ(B)√ρ
σmin(B)

√√√√N/L

 ,

where O ∈ RK×K is an orthogonal matrix.
Larger Lmakes the error bound looser, but larger Lmeans that only
fewer queries need to be made, and thus less resource consuming.

Experiment Results

ISynthetic Data Experiment:
I Baselines: GeoNMF [Mao et al., 2017], CD-MVSI [Mao et al., 2017]
I Parameters: K = 5, L = 10 with diagonal query pattern

Graph
Size

Ideal Case (A = P ) Binary Observation Case
Proposed Proposed GeoNMF CD-MVSI

N Dist Dist MSE MSE MSE
1× 104 7.34×10−13 0.342 0.0475 0.0554 0.0839
2× 104 2.80×10−13 0.209 0.0198 0.0386 0.0943
4× 104 1.22×10−13 0.194 0.0123 0.0341 0.0955
8× 104 1.12 ×10−13 0.101 0.0066 0.0261 0.0924

IReal Data Experiment - Microsoft Academic Graph:
IMAG1 (N = 37680, K = 3); MAG2 (N = 19457, K = 3); L = 10

Datasets Proposed GeoNMF CD-MVSI
Avg. SRC Time(s.) Avg. SRC Time(s.) Avg. SRC Time(s.)

MAG1 0.125 0.26 0.122 1.79 0.089 0.59
MAG2 0.441 0.23 0.240 4.66 0.249 0.53
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