

Crowdsourcing via Annotator Co-occurrence Imputation and Provable Symmetric Nonnegative Matrix Factorization

Shahana Ibrahim, Xiao Fu

School of EECS, Oregon State University, Corvallis, OR, USA

Crowdsourcing

Crowdsourcing techniques

- employ a group of annotators to label the data items
- ☐ integrate the acquired labels

Dawid-Skene Model

- ► Dawid and Skene [1979] formulated label integration as **model identification**
- ▶ Under Dawid & Skene (D&S) model,

$$\Pr(X_1 = k_1, \dots, X_M = k_M) = \sum\limits_{k=1}^K \Pr(Y = k) \prod\limits_{m=1}^M \Pr(X_m = k_m | Y = k)$$

lacksquare Define the **confusion matrix** $m{A}_m \in \mathbb{R}^{K imes K}$ for each annotator and the prior probability vector $oldsymbol{\lambda} \in \mathbb{R}^K$ such that

$$\boldsymbol{A}_m(k_m,k) := \Pr(X_m = k_m | Y = k)$$
 $\boldsymbol{\lambda}(k) := \Pr(Y = k)$

 \blacktriangleright One can build a MAP estimator for y_n after identifying ${m A}_m$'s and ${m \lambda}$

Prior Approaches with Dawid-Skene Model

- ► Dawid-Skene (D&S) Model & EM Algorithm [Dawid and Skene, 1979]:
- ☐ No model identifiability & algorithm tractability
- ► Bayesian Methods [Whitehill et al., 2009; Zhou et al., 2012]:
- ► Extended D&S model considering "item difficulty" and "annotator ability" ► No model identifiability
- ► Tensor Methods [Zhang et al., 2016; Traganitis et al., 2018]:
- ☐ Using third-order co-occurrences of annotator responses, for e.g.,
- $\mathsf{Pr}(X_m = k_m, X_\ell = k_\ell, X_j = k_j)$
- ☐ Established model identifiability

 $oldsymbol{R}_{m,j}(k_m,k_j)$

- ☐ High sample complexity due to third-order statistics
- ☐ High computational cost from the tensor decomposition
- ► Coupled NMF (CNMF)-based Approach [Ibrahim et al., 2019]:
- \square Using pairwise co-occurrences of responses: $|R_{m,j} = A_m D A_j|$, $D = \text{diag}(\lambda)$ $\Pr(X_m = k_m, X_j = k_j) = \sum_{k=1}^K \Pr(Y = k) \Pr(X_m = k_m | Y = k) \Pr(X_j = k_j | Y = k)$
- ☐ less sample complexity compared to third-order statistics
- ▶ If annotators m and j **co-label** some items, $R_{m,j}$ can be estimated via sample averaging

CNMF Approach - A Deeper Look

► The CNMF criterion in [Ibrahim et al., 2019]:

find
$$\{\boldsymbol{A}_m\}_{m=1}^M, \boldsymbol{\lambda}$$

s.t. $\boldsymbol{R}_{m,j} = \boldsymbol{A}_m \boldsymbol{D} \boldsymbol{A}_j^\top$, $(m,j) \in \boldsymbol{\Omega}, \leftarrow$ observed set $\boldsymbol{A}_m \geq \boldsymbol{0}, \boldsymbol{1}^\top \boldsymbol{A}_m = \boldsymbol{1}^\top$, $\boldsymbol{1}^\top \boldsymbol{\lambda} = 1, \boldsymbol{\lambda} \geq \boldsymbol{0}$.

▶ Identifiability under the assumption that there exist two subsets of annotators \mathcal{P}_1 and \mathcal{P}_2 , where $\mathcal{P}_1\cap\mathcal{P}_2=\emptyset$ and $\mathcal{P}_1\cup\mathcal{P}_2\subseteq[M]$,

$$oldsymbol{H}^{(1)} := [oldsymbol{A}_{m_1}^ op, \ldots, oldsymbol{A}_{m_{|\mathcal{P}_1|}}^ op]^ op, \quad oldsymbol{H}^{(2)} := [oldsymbol{A}_{j_1}^ op, \ldots, oldsymbol{A}_{j_{|\mathcal{P}_2|}}^ op]^ op,$$

s.t. $m{H}^{(1)}$ and $m{H}^{(2)}$ satisfy the *sufficiently scattered condition* (SSC)

Def. 1: (SSC) [Fu et al., 2015]

Any nonnegative matrix $oldsymbol{Z} \in \mathbb{R}_+^{I imes K}$ satisfies the SSC if the conic hull of $oldsymbol{Z}^ op$ (i.e., cone $(oldsymbol{Z}^ op)$) satisfies $\mathcal{C} \subseteq \mathrm{cone}\{m{Z}^{ op}\}$ where $\mathcal{C} = \{m{x} \in \mathbb{R}^K \mid m{x}^{\! op} m{1} \geq |$ $\sqrt{K} - 1 \| \boldsymbol{x} \|_2$.

lacksquare A row of $oldsymbol{H}^{(i)}$ (i.e., a row of $oldsymbol{A}_m$) close to kth unit vector implies $\mathbf{A}_m(k,k) \approx 1$ and $\mathbf{A}_m(k,k_m) \approx 0, k_m \neq k$ (class specialists),

i.e., annotator m rarely confuses data from other classes with those from class k

- **►** Identifiability Challenge:
- lackbrack Both $m{H}^{(1)}$ and $m{H}^{(2)}$ satisfy the SSC \implies the disjoint \mathcal{P}_1 and \mathcal{P}_2 both contain "class specialists" for all K classes (somewhat restrictive condition)
- Computational Challenges:
- ► The CNMF criterion in [Ibrahim et al., 2019] is handled using KL-divergence based model fitting problem with constraints (hardly scalable)
- ► Unclear convergence guarantee even if there is no noise
- Unclear identifiability guarantee when there is noise

Proposed Approach - SymNMF Framework

lacksquare Assume that all $m{R}_{m,j} = m{A}_m m{D} m{A}_j^ op$ are available for all $m,j \in [M]$

Symmetric Non-negative Matrix Factorization (SymNMF) $|m{R}_{1,1} \ldots m{R}_{1,M}|$

$$egin{aligned} oldsymbol{X} &= egin{aligned} oldsymbol{R}_{1,1} & \dots & oldsymbol{R}_{1,M} \ oldsymbol{R}_{M,1} & \dots & oldsymbol{R}_{M,M} \end{aligned} = oldsymbol{egin{aligned} oldsymbol{A}^ op, \dots, oldsymbol{A}^ op, oldsymbol{A}^ op, oldsymbol{A}^ op, \dots, oldsymbol{A}^ op, oldsymbol{A}^$$

- \blacktriangleright If H satisfies SSC, the SymNMF model is unique [Huang et al., [2014], i.e., A_m 's and λ can be identified upto common column permutations
- $ightharpoonup SSC ext{ of } H \implies ext{ only one set of "class specialists"} is needed$ ightharpoonup the CNMF framework needs two disjoint sets of annotators \mathcal{P}_1 and \mathcal{P}_2 both contain "class specialists" for all K classes
- much easier to satisfy compared to the CNMF framework case
- ightharpoonup The challenge in SymNMF framework is that many $R_{m,j}$'s may be missing.
- $ightharpoonup oldsymbol{R}_{m,m} = oldsymbol{A}_m^{oldsymbol{ op}}, \, orall m$ do not have physical meaning and thus cannot be observed
- \blacktriangleright if annotators m,j never co-labeled any items, $R_{m,j}$ is missing

Designated Annotators-based Imputation

▶ In crowdsourcing, some annotators may be designated to co-label items with other annotators.

- $oldsymbol{1}.~oldsymbol{C}\longleftarrow [oldsymbol{R}_{m.r}^ op,oldsymbol{R}_{\ell.r}^ op]^ op$ 2. $C \stackrel{\mathsf{thin} \; \mathsf{SVD}}{\longrightarrow} [\boldsymbol{U}_m^\top, \boldsymbol{U}_\ell^\top]^\top \boldsymbol{\Sigma}_{m,\ell,r} \boldsymbol{V}_r^\top$ 3. $oldsymbol{R}_{m,n} \longleftarrow oldsymbol{U}_m oldsymbol{U}_\ell^{-1} oldsymbol{R}_{n,\ell}^ op$
- The diagonal blocks $oldsymbol{R}_{m,m}$'s can be estimated by observing $oldsymbol{R}_{m,\ell}$, $oldsymbol{R}_{m,r}$, and $oldsymbol{R}_{\ell,r}$

robust under such

unbalanced estimates

Theorem 1: (Informal)

Assume that $m{R}_{m,r}$, $m{R}_{n,\ell}$ and $m{R}_{\ell,r}$ are estimated using at least S items and that $\kappa(\boldsymbol{A}_m) \leq \gamma$ and $\mathrm{rank}(\boldsymbol{A}_m) = \mathrm{rank}(\boldsymbol{D}) = K$ for all m. Suppose that S is above certain threshold. Then, any unobserved $R_{m,n}$ can be estimated via (1)-(3), with probability of at least $1-\delta$ such that $\|\widehat{m{R}}_{m,n}-m{R}_{m,n}\|_{\mathrm{F}}=O\left(K^2\gamma^3\sqrt{\log(1/\delta)/S}
ight)$.

► What if we do not have designated annotators?

Robust Co-occurrence Imputation Criterion

▶ block ℓ_2/ℓ_1 -mixed norm based criterion

Theorem 2: Stability under Finite Samples

Assume that $\widehat{m{R}}_{m,j}$'s are estimated with $S_{m,j}$ samples, $orall \; (m,j) \in m{\Omega}$ and each $\widehat{m{R}}_{m,j}$ is observed with the same probability. Let $\{m{U}_m^*, m{U}_i^*\}$ be any optimal solution of the above. Then we have

$$\frac{1}{L} \sum_{m < j} || \boldsymbol{U}_m^* (\boldsymbol{U}_j^*)^\top - \boldsymbol{R}_{m,j} ||_{\mathrm{F}} \leq C \sqrt{\frac{MK^2 \log(M)}{|\boldsymbol{\Omega}|}} + \left(\frac{1}{|\boldsymbol{\Omega}|} + \frac{1}{L}\right) \sum_{(m,j) \in \boldsymbol{\Omega}} \frac{1 + \sqrt{M}}{\sqrt{S_{m,j}}},$$
 with probability of at least $1 - 3 \exp(-M)$, where $L = M(M-1)/2$ and $C > 0$.

Shifted ReLU Empowered SymNMF

Assuming that X is observed after co-occurrence imputation:

 $oxed{X = HH^ op rac{\mathsf{square root decomp.}}{\longrightarrow}} X o UU^ op \implies U = HQ^ op, Q$ is orthogonal

Estimation Criterion: minimize $\|\boldsymbol{H} - \boldsymbol{U}\boldsymbol{Q}\|_{\mathrm{F}}^2$

Proposed Algorithm:

 $m{H}_{(t+1)} \leftarrow \mathsf{ReLU}_{lpha_{(t)}}\left(m{U}m{Q}_{(t)}
ight)\left(m{Orth.}\ \ m{proj.}\ \ m{of}\ \ m{each}\ \ m{elem}$ ent of $UQ_{(t)}$ to $[\alpha_{(t)}, +\infty)$ subject to $m{H} \geq m{0}, \ m{Q}^{ op} m{Q} = m{I}$ $m{W}_{(t+1)} m{\Sigma}_{(t+1)} m{V}_{(t+1)}^{ op} \leftarrow \mathsf{svd} \left(m{H}_{(t+1)}^{ op} m{U} \right) \mid (\mathsf{Procrustes})$ $oldsymbol{Q}_{(t+1)} \leftarrow oldsymbol{V}_{(t+1)} oldsymbol{W}_{(t+1)}^ op$

- reminiscent of the SymNMF algorithm proposed in [Huang et al.,
- \blacktriangleright always uses $\alpha_{(t)} = 0$; convergence w/wo noise is unclear
- ► Convergence analysis for SymNMF algorithms is challenging
- most existing SymNMF works showed only stationary point convergence [Huang et al., 2014; He et al., 2011]

Convergence of the Proposed SymNMF Algorithm

Theorem 3: (Informal)

Consider $\hat{m U}=m Hm Q^ op+m N$. Denote $u=\|m N\|_{
m F}$, $\sigma=\|m H\|_{
m F}$, $h_{(t)}=\|m H_{(t)}-m Hm \Pi\|_{
m F}^2$ and $q_{(t)} = \|m{Q}_{(t)} - m{Q}m{\Pi}\|_{ ext{F}}^2$, where $m{\Pi}$ is any permutation matrix. Under the assumptions that, $\square H$ is full rank and sparse; the energy of range space of H is well spread over its rows; \square the noise term ν and the initial error $q_{(0)}$ are small enough;

there exists $\alpha_{(t)}=\alpha>0$, $\eta>0$ and $0<\rho<1$ such that with high probability,

 $q_{(t)} \leq
ho q_{(t-1)} + O\left(K\sigma^2
u^2\right), \quad h_{(t)} \leq 2\eta \sigma^2 q_{(t-1)} + 2
u^2 \leftarrow ext{ linear convergence}$

- ► Shifted ReLU operator is crucial for guaranteeing the convergence
- \blacktriangleright The rate parameter ρ is smaller (faster convergence) if H is sparser

Experiment Results

► Experiments - UCI Data:

▶ Each annotator (MATLAB classifiers) is allowed to label an item with prob. $p_m \in (0, 1]$; randomly choosing two annotators and letting them label with higher prob. (i.e., p_d)

Table: UCI Connect4 dataset (N=20,561, M=10, K=3)

Algorithms	$p_m = 0.3$	$p_m \in (0.3, 0.5),$	$p_m \in (0.5, 0.7),$	Time(s)	
		$p_d = 0.8$	$p_d = 0.8$		
RobSymNMF	33.26	33.06	32.16	0.142	
RobSymNMF-EM	34.27	33.20	32.11	0.191	
DesSymNMF	33.45	32.18	31.42	0.061	
DesSymNMF-EM	33.94	32.50	31.40	0.128	
CNMF	36.26	39.55	34.70	4.741	
TensorADMM	36.20	34.34	35.18	5.183	
Spectral-D&S	64.28	66.95	71.97	20.388	
MV-EM	34.14	34.17	34.19	0.107	
MinimaxEntropy	36.20	36.17	35.46	27.454	
Majority Voting	37.76	36.88	36.75	_	

► Experiments - Amazon Mechanical Turk (AMT) Data:

Table: AMT datasets "RTE" and "TREC"

Algorithms	RTE		TREC	
	N = 800, .	M = 164, K = 2)	(N = 19, 033)	M = 762, K = 2
	Error (%)	Time (s)	Error (%)	Time (s)
RobSymNMF	7.25	2.31	30.68	64.99
RobSymNMF-EM	7.12	2.4	29.62	67.39
DesSymNMF	13.87	3.32	36.75	71.31
DesSymNMF-EM	7.25	3.43	29.36	72.13
CNMF	7.12	18.12	29.84	536.86
TensorADMM	N/A	N/A	N/A	N/A
Spectral-D&S	7.12	6.34	29.58	919.98
MV-EM	7.25	0.09	30.02	3.12
MinimaxEntropy	7.5	6.4	30.89	356.32
Majority Voting	10.31	N/A	34.85	N/A

References

- ► A. P. Dawid and A. M. Skene. *Maximum likelihood estimation of observer* error-rates using the EM algorithm. Applied statistics, pp 20-28, 1979.
- S. Ibrahim, X.Fu, N. Kargas, and K. Huang. *Crowdsourcing via pairwise* co-occurrences: Identifiability and algorithms. In Advances in NeurIPS, vol 32, pp 7847-7857, 2019.