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Data Labeling and Crowdsourcing

IMassive labeled data is a key performance booster of deep networks.
ICrowdsourcing is widely used for data labeling.

Dawid-Skene Model

IThe confusion matrix Am ∈ RK×K for each annotator m and the prior
probability vector d ∈ RK are the Dawid-Skene model parameters.

Am(km, k) := Pr(Xm = km|Y = k),
d(k) := Pr(Y = k)

IThe goal is to estimate Am for m = 1, . . . ,M and d.
Prior Art

IDawid-Skene Model [Dawid & Skene, 1979]:
I Proposed expectation maximization (EM) algorithm for ML estimation.
IWidely used, but model identifiability is unclear.

ISpectral Method [Zhang et al., 2014]:
I Established identifiability using orthogonal and symmetric tensor decomposition.
I Employed third-order co-occurrences of responses; may have high sample complexity.

Pairwise Co-occurrences of Annotator Responses

IThe joint PMF of any two annotator responses,
Rm,`(km, k`) = K∑

k=1
Pr(Y = k)
︸ ︷︷ ︸

d(k)
Pr(Xm = km|Y = k)
︸ ︷︷ ︸

Am(km, k)
Pr(X` = k`|Y = k)
︸ ︷︷ ︸

A`(k`, k)
,

=⇒ Rm,` = AmDA>` ∈ RK×K, D = Diag(d).

IRm,`’s can be estimated via sample averaging.
IRm,`’s are second-order statistics; easier to estimate than third-order ones.

Proposed Approach

IConsider an annotator m who co-labels with annotators m1, . . . ,mT (m),
Zm =

Rm,m1,Rm,m2, . . . ,Rm,mT (m)

 = Am

 DA>m1
, . . . ,DA>T (m)︸ ︷︷ ︸

H>
m

.

I `1-normalize the columns of Zm to get Zm = AmH>
m where H>

m is row
normalized.

IAssume that there exits an index set Λq = {q1, . . . , qK} such that Hm(Λq, :) = IK
(known as seperability) [Donoho & Stodden, 2003].

IEstimating Am boils down to identifyting index set Λq which can be achieved by
successive projection algorithm (SPA) [Araújo et al. 2001].

I Index identification via SPA is repeated for every Am (named as MultiSPA).

Model Identifiability

I If each class k has an annotator who can perfectly identify class k, then
Hm(Λq, :) = IK can be satisfied.

Zm = Am D
A>m1

, . . . ,

e1x
A>me1

, . . . ,

e2x
A>me2

, . . . ,

e3x
A>me3

, . . . ,A>T (m)


︸ ︷︷ ︸
H>

m

Theorem 1: Assume that annotatorsm and t co-label at least S samples ∀t ∈ {m1, . . . ,mT (m)}, Also
assume that the constructed Ẑm satisfies ‖Ẑm(:, l)‖1 ≥ η,∀l ∈ {1, . . . KT (m)}, where η ∈ (0, 1].
Suppose that for every class index k ∈ {1, . . . , K}, there exists an annotator mt(k) ∈ {m1, . . . ,mT (m)}
such that Pr(Xmt(k) = k|Y = k) ≥ (1− ε) K∑

j=1
Pr(Xmt(k) = k|Y = j), ε ∈ [0, 1]

Then, if ε ≤ O
max

K−1κ−3(Am),
√
ln(1/δ)(σmax(Am)

√
Sη)−1

, with probability greater than 1− δ,
the SPA algorithm can estimate an Âm from Zm = AmDH>

m with the estimation error bounded by
O

(√
Kκ2(Am) max

(
σmax(Am)ε,

√
ln(1/δ)(

√
Sη)−1)) where σmax(Am) is the largest singular value of

Am, and κ(Am) is the condition number of Am.
I Implication: Even if there are no perfect annotators for each class, MultiSPA

estimates Am.
Do we favour more annotators?

Theorem 2 :Let ρ > 0, ε > 0, and assume that the rows of Hm are generated within the (K − 1)-
probability simplex uniformly at random. If M ≥ Ω

ε−2(K−1)

K log
K
ρ


 , then with probability greater than

or equal to 1− ρ, there exists rows of Hm indexed by q1, . . . qK such that
‖Hm(qk, :)− e>k ‖2 ≤ ε, k = 1, . . . , K.

I Implication: If more number of annotators are available, there exists high chance
for seperability condition.

Enhanced Identifiability

IThe model can be identified under a relaxed assumption by solving

find {Am}Mm=1,D (1a)
subject to Rm,` = AmDA>` , ∀m, ` ∈ {1, . . . ,M} (1b)

1>Am = 1>, Am ≥ 0, ∀m, 1>d = 1, d ≥ 0. (1c)
Theorem 3 : Assume that rank(D) = rank(Am) = K for all m = 1, . . . ,M , and that
there exist two subsets of the annotator, indexed by P1 and P2, where P1 ∩ P2 = ∅ and
P1 ∪ P2 ⊆ {1, . . . ,M}. Suppose that from P1 and P2 the following two matrices can be
constructed:

R̃ =



Rm1,`1 Rm1,`2 . . . Rm1,`|P2|... ... . . . ...
Rm|P1|,`1 Rm1,`2 . . . Rm|P2|,`|P2|


=



Am1...
Am|P1|

.


︸ ︷︷ ︸

H (1)

D [A>`1
, . . . ,A>`|P2|

]
︸ ︷︷ ︸

(H (2))>

Denote H (1) = [A>m1
, . . . ,A>m|P1|

]>, H (2) = [A>`1
, . . . ,A>`|P2|

]>, where mt ∈ P1 and `j ∈ P2.
Furthermore, assume that both H (1) and H (2) are sufficiently scattered.Then, solving Problem
(1) recovers Am for m = 1, . . . ,M and D = diag(d) up to identical column permutation.

IExtremely well trained annotators for each class are not required to satisfy
sufficiently scattered condition.

Left: Sufficiently scattered H ; Right: Separable H

IProblem (1) is solved by a BCD algorithm with KL divergence as the fitting
criterion (used MultiSPA as initialization, thus named as MultiSPA-KL).

Amazon Mechanical Turk (AMT) Experiment Results

IThe datasets annotated by AMT workers are used.
Algorithms TREC Bluebird RTE Web Dog

(%)Error (sec)Time(%)Error (sec)Time(%)Error (sec)Time(%)Error (sec)Time(%)Error (sec)Time
MultiSPA 31.47 50.68 13.88 0.07 8.75 0.28 15.22 0.54 17.09 0.07
MultiSPA-KL 29.23 536.89 11.11 1.94 7.12 17.06 14.58 12.34 15.48 15.88
MultiSPA-D&S 29.84 53.14 12.03 0.09 7.12 0.32 15.11 0.84 16.11 0.12
Spectral-D&S 29.58 919.98 12.03 1.97 7.12 6.40 16.88 179.92 17.84 51.16
TensorADMM N/A N/A 12.03 2.74 N/A N/A N/A N/A 17.96 603.93
MV-D&S 30.02 3.20 12.03 0.02 7.25 0.07 16.02 0.28 15.86 0.04
Minmax-entropy 91.61 352.36 8.33 3.43 7.50 9.10 11.51 26.61 16.23 7.22
EigenRatio 43.95 1.48 27.77 0.02 9.01 0.03 N/A N/A N/A N/A
KOS 51.95 9.98 11.11 0.01 39.75 0.03 42.93 0.31 31.84 0.13
GhoshSVD 43.03 11.62 27.77 0.01 49.12 0.03 N/A N/A N/A N/A
Majority Voting 34.85 N/A 21.29 N/A 10.31 N/A 26.93 N/A 17.91 N/A
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