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Autonomous Vehicles

Active research going on in Intelligent Transportation

How do we optimize the traffic flow once self driving cars are on road?

Can we increase the fuel efficiency once everything is automated?

We have lots of data. What do we do using that for addressing these

questions?
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Road Intersection Geometry

Figure: The intersection at Tildenwood Dr. and Montrose Rd.
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Road Intersection Geometry Cont..

The intersection is equipped with magnetic vehicle detectors at the

stop bar

Using vehicle detection data, each phase duration is typically actuated

at the controller

There are fixed, semi actuated and fully actuated traffic controllers

used

If the current signal phase and elapsed time is obtained from the

controller, how do we get the estimate of the residual time of the

current phase duration?
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SPaT Messages

Definition

A SPaT (Signal Phase and Timing) message describes the current phase

at a signalized intersection, together with the residual time of the phase,

for every lane (hence every approach and movement) of the intersection

SPaT Messages can be periodically broadcast by the intersection, say

once per 100ms, typically with a 10ms accuracy

For a fixed-time controller the SPaT information is definitive

For an actuated controller, only an estimate of the residual time can

be given
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Why SPaT Messages!!!

Several studies show eco-friendly speed advice is possible using SPaT

data.

Velocity planning algorithms can be formulated using residual phase

duration data

Results in less emissions and fuel consumptions

Vehicle trajectory formulation in conjuction with MAP messages

MAP messages gives the physical geometry of different intersections

Vehicles can traverse without stopping at red light through a series of

intersections

Results in less traffic
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SPaT Messages Today??

No intersection in the U.S. today broadcasts SPaT or MAP messages

Very few cities have a Traffic Management Center that receives phase

information from all its intersections

But Facts..

Significant interest and activity going on in the automotive and ITS

communities for standardization of SPaT and MAP messages

Inexpensive to collect and process phase information locally at each

intersection

So Future...

SPaT will become common in the era of self driving cars. So we need

accurate estimates for residual phase duration in SPaT messages
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Some Related Studies on SPAT

[1] uses samples of GPS position to estimate phase duration , but

used only fixed time signals, Thee absolute error reported is upto 6s

[2] engages with smartphone to detect the signal light at an

intersection and predict its phase duration. But the results were

unimpressive with misdetection rates upto 12.4

[3] uses a probabilitisric phase duration prediction by taking a

confidence bound on the frequency distribution. But this method is

not efficient for predicting the residual time of the phase

Several studies focusses on predicting the vehicle flow at arterial

roads.
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Problem Statement.

if t is the current time in cycle n during phase p4, p1,...., then p4(n)− t,

p1(n)− t... are the residual times of the phase that is included in the

SPaT message

The SPaT problem

Let I (t) be the information about previous phases available at time

t ∈ [0, L] during cycle n. The problem is to predict the residual times

pk(m)− t of all phases k for all future cycles m = n, n + 1, .... given I (t).
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Measurement Site

Figure: The intersection at Tildenwood Dr. and Montrose Rd.

Cycle length is fixed by the timing plan at L = 100, 110or120s

Cycle is divided into nominal durations for each phase.

Controller modifies these durations in each cycle depending on vehicle

detections (actuated intersection)
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Cycle and Phase Durations

At any give time t, predict: p4(n, t), p1(n, t), p2(n, t)
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Cycle and Phase Durations Cont..

If di is the duration of the phase pi , the following identities hold for this

intersection

d4 + d1 + d2 = d8 + d5 + d6 = L, (1)

d1 + d2 = d5 + d6, (2)

d4 = d8. (3)

Equation (1) recognizes L as the cycle length;
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Simulation Data
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Properties of Simulation Data

Our study uses data for 36,000 cycles from September to October

2016.

The phase data for a sample of 2,000 cycles (about 3 days) is shown

in Figure.

The minimum value of d4 is the pedestrian clearance time of 36s; the

duration of the phases is extended by 5s each time an additional

vehicle is detected

Large values of d4 and d1 occur only during the AM and PM peaks.
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Phase Duration Distribution

Since d2 = L− (d4 + d1), it is enough to calculate pdfs of d4 and d1.

Since d4 and d1 may be dependent, we need to calculate d4 + d1 also.
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Conditional Expectation (CE) based Prediction

At t = 0, given unconditional pdfs of d4, d1 and d4 + d1 , reasonable

predictions are E(d4) , E(d1) and E(d4 + d1) respectively

At a later time t in the cycle, if we know d4 is still actuated, then we

have an extra information, that is d4 > t. So a better prediction

model is E(d4) conditioned on the event {d4 > t}

CE Prediction Model

Predicted d4 at time t , d̂4(t) = E(d4|d4 > t)
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Conditional Expectation based Prediction Cont..
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Conditional Expectation based Prediction Cont..

Residual time of p4 at time t is predicted as

r̂4(t) = d̂4(t)− t (4)
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Caveats of CE Prediction

Residual time prediction, r̂4 suddently increases at around t = 35 by

about 2.5s which may appear counter-intuitive

For example, consider a driver waiting for phase p1 to turn green after

the end of p4. The residual time decreases initially. However, the

driver will find that residual time suddenly extended by a few more

seconds at t = 35 before decreasing again.

This can create significant problems in designing a control strategies

for eco-driving
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Confidence based (CB) Prediction

Let α be the required confidence bound. We can define the

confidence based prediction as the value d for which one can

guarantee P(d4 > d) = α.

Let F (d) = P(d4 ≤ d) be the CDF of d4. Then

1− F (d) = P(d4 > d). Then at time t = 0, one way to predict is

finding the solution d such that 1− F (d) = α.

CB Prediction Model

Predicted d4 at time t , d̂4(t) = {d |
(
1− F (d |d4 > t)

)
= α}
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CB Prediction with Confidence Bound α = 0.8
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Prediction Errors

The mean Absolute Error (MAE) and Mean Square Error(MSE) of the

prediction at time t are given by

MAE(t) =
1

n(t)

n(t)∑
n=1

| d̂4(t)− d4(ω) | (5)

MSE(t) =
1

n(t)

n(t)∑
n=1

[
d̂4(t)− d4(ω)

]2
(6)

where ω = 1, ...., n(t) are samples with d4(ω) > t
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CE Prediction vs CB Prediction
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Prediction as a minimizing loss function

The optimal prediction d∗(t) at time t is defined as

d∗(t) = arg min
x

E[l(x − d)|d > t] (7)

where l(.) is a sepcific loss function.

For MSE, l(y) = y2. For MAE, l(y) =| y |

For MAE, both positive and negetive error are judged equally harmful

In reality, an overestimate of ’time to red’ is more harmful than the

same error in ’time to green’.
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Prediction as a minimizing loss function

We can have an asymmetric loss function as below

l(y) =

c1|y | , if y < 0

c2y , if y ≥ 0
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Prediction of other phases

Prediction of residual phase duration d1 given t seconds are elapsed in

p1 is similar to d4. d̂1(t) = E(d1|d1 > t)

Lets consider prediction of starting of p2 while the driver is in p4,

Here we have to predict d4 + d1 given d4 > t.

Treat d = d4 + d1 as a single random variable and predict d4 + d1 as

E(d4 + d1|d4 + d1 > t)

Treat (d4, d1) as 2 dimensional random variable and obtain conditional

distribution P(d4 + d1|d4 > t). Predict d4 + d1 as E(d4 + d1|d4 > t)
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Prediction of other phases Cont.
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Another Intersection

Figure: The intersection at Montrose Road and Montrose Pkwy.
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Another Intersection-Results
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Key Findings

The algorithms predict the times for all future phase transitions,

based on previous phase measurements and on the real time

information that locates the current time within the current phase

For actuated signals, conditioning the prediction on this real time

information greatly reduces the prediction error

For semi-actuated signals, as time increases, the estimate of the

residual phase duration may increase or decrease, posing a challenge

to construct fuel-minimizing speed profiles

The best SPaT estimate is the one that minimizes the drivers own

loss function
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Future Work

We can investigate vehicle detections to improve the phase duration

estimations.

Figure: Prediction using Vehicle Detections
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Future Work Cont...

Using only vehicle detections will be realistic since managing the huge

amount of data from Traffic Mananagemnt servers can be avoided

and GPS data is readily avaialble. Learning algorithms on vehicle

detections can be used to estimate cycle length, phase durations and

predict the current phase the residual phase durations

A generalized model which can apply for every intersections which

may help in predicting the current phase and residual phase durations

in multiple intersections.

Optimising the vehicle flow through a series of intersections from the

generalised model
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Thank You
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